New Lower Bounds on the Self-Avoiding-Walk Connective Constant

نویسندگان

  • Takashi Hara
  • Gordon Slade
  • Alan D. Sokal
چکیده

We give an elementary new method for obtaining rigorous lower bounds on the connective constant for self-avoiding walks on the hypercubic lattice Zd. The method is based on loop erasure and restoration, and does not require exact enumeration data. Our bounds are best for high d, and in fact agree with the rst four terms of the 1=d expansion for the connective constant. The bounds are the best to date for dimensions d 3, but do not produce good results in two dimensions. For d = 3; 4; 5; 6, respectively, our lower bound is within 2:4%, 0:43%, 0:12%, 0:044% of the value estimated by series extrapolation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Borel type bounds for the self-avoiding walk connective constant

Let µ be the self-avoiding walk connective constant on Z d. We show that the asymptotic expansion for β c = 1/µ in powers of 1/(2d) satisfies Borel type bounds. This supports the conjecture that the expansion is Borel summable.

متن کامل

Improved Upper Bounds for Self-Avoiding Walks in Zd

New upper bounds for the connective constant of self-avoiding walks in a hypercubic lattice are obtained by automatic generation of finite automata for counting walks with finite memory. The upper bound in dimension two is 2.679192495.

متن کامل

New Upper Bounds for the Connective Constants of Self-avoiding Walks

Using a novel implementation of the Goulden-Jackson method, we compute new upper bounds for the connective constants of self-avoiding walks, breaking Alm's previous records for rectangular (hypercubic) lattices. We also give the explicit generating functions for memory 8. The new upper bounds are 2.

متن کامل

Improved lower bounds on the connective constants for self-avoiding walks

We calculate improved lower bounds for the connective constants for selfavoiding walks on the square, hexagonal, triangular, (4.8), and (3.12) lattices. The bound is found by Kesten’s method of irreducible bridges. This involves using transfermatrix techniques to exactly enumerate the number of bridges of a given span to very many steps. Upper bounds are obtained from recent exact enumeration d...

متن کامل

Counting Self-avoiding Walks

The connective constant μ(G) of a graph G is the asymptotic growth rate of the number of self-avoiding walks on G from a given starting vertex. We survey three aspects of the dependence of the connective constant on the underlying graph G. Firstly, when G is cubic, we study the effect on μ(G) of the Fisher transformation (that is, the replacement of vertices by triangles). Secondly, we discuss ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1993